Radisson Hotel Narita
286-0221 Chiba Tomisato- shi Nakaei
650-35 Tokyo, Japan
Phone : 1 (702) 988 2320
Toll Free: 1800–883-8082
Email: cardiology@magnusmeetings.com
October 24-25, 2019 | Tokyo, Japan

Rick Kamps

Oral Speaker at Cardiology World Congress 2019- Rick Kamps
Rick Kamps
Maastricht University, Netherlands
Title : Next-Generation Sequencing in clinical diagnostics: Genetic testing, variant classification, and functional analysis


Next-generation sequencing (NGS) technology expanded in the last decades with significant improvements in the reliability, sequencing chemistry, pipeline analyses, data interpretation and costs. Such advances make the use of NGS feasible in clinical practice nowadays. This presentation describes the recent technological developments in NGS applied to the field of heterogeneous mitochondrial diseases showing lethal hypertrophic cardiomyopathy (HCM) and Leigh Syndrome (LS). A number of clinical applications are highlighted i.e., variant detection of autosomal recessive diseases based on DNA-sequencing, detection of splice variants based on RNA-sequencing, application for pre-implantation genetic diagnosis, downstream variant analysis by using functional model assays. In a recent study, we provided data of 3 families with pediatric HCM and LS, and multiple oxidative phosphorylation deficiencies (OXPHOS), but we identified the causative variant by exome-sequencing. Given the dual genetic heterogeneity of OXPHOS disorders with more than 1500 nuclear genes potentially involved, Whole Exome Sequencing (WES) is the best suitable unbiased approach for finding the underlying genetic cause. First, we started with an autosomal recessive disease model and in case of reported consanguinity i.e. one patient, we focused on homozygosity regions. Conclusive remarks, clinical and technical limitations, implications and ethical considerations that relate to NGS are provided in this presentation.

Audience take away: 

• The audience will learn more about NGS in diagnostics as a first strategy to determine the genetic defect in pediatric mitochondrial diseases, variant classification, and functional assays.
•  Improved understanding in dual genetic defects and clinical heterogeneous pediatric diseases. Is this research that other faculty could use to expand their research or teaching? Implementing NGS in a clinical diagnostics area. Does this provide a practical solution to a problem that could simplify or make a designer’s job more efficient? Better understanding in variant classification and functional analysis. Will it improve the accuracy of a design, or provide new information to assist in a design problem? List all other benefits. This NGS strategy improves the clinical diagnostic yield up to ~70% in most pediatric mitochondrial disease cases. 


Rick Kamps has his expertise in Next Generation Sequencing (NGS) platforms. He is a research manager and finalizing his PhD. The basic inventions for these platforms are combinations of new and old technologies, which results in great possibilities in clinical genomics. These developments are contributing in a sustainable healthcare for everybody and a better understanding in complex genetic diseases. He is an interested and a motivated skilled young researcher in a dynamic field (in-out of the box thinking) of NGS in clinical diagnostics.